考试有分不拿,在徐川看来那是王八蛋才会的事情。
每一次考试能拿到的分,他都会尽自己的力去拿到。
检查完题目后,便下笔了。
没有用常规的高中解题法,徐川从狄利克雷函数出发,将d(x)=lik→∞){lij→∞)cos(k!πx)}转向大学的狄利克雷积分,而后再求解。
他没有用常规的方法来做这三道题目,因为狄利克雷函数的幸质相当特殊,它的图像以y轴为对称轴,是一个偶函数。
它是分析学中的一种构造幸函数,有着许多特殊的幸质,比如它处处不连续,处处极限不存在,不可黎曼积分等。
这种函数一般应用在数学分析、实变函数与泛函分析、复合函数等领域,用于构造出一些反例来判断一些数学猜想,数学命题的真伪。
用常规的方法来解这道题目,需要书写的答案会很长,各种公式变化相当麻烦。
但如果将狄利克雷函数转变成狄利克雷积分,再运用复变函数中留数的有关知识进行求解积分,然后用拉普拉斯变换和傅式积分求解的话。
这样一来,原本需要复杂计算方法的步骤直接简化到了三步。
这种解法,其实并不是纯数学领域的东西,严格的来说,这是物理学阻尼自由振动方程中的知识。
使用这种方法,需要一定的大学物理知识进行支持,是他前段时间从《物理学进展》上学到的新知识。
那时候他的第一篇论文登陆《物理学进展》期刊,在浏览自己的论文时,徐川顺带看到了一些很有意思的东西。
一篇有关阻尼自由振动方程的论文。
后面他将期刊从劳唐那里借走,认真的研旧了一下这篇论文,进而思索出了这种转变狄利克雷函数的解题思路,准备再写一篇论文。
没想到现在正好可以应用在这里。
此页为本章 第1页 / 共3页~
如内容不全或提示是最新章节
(^ ^) 请退出(阅-读-模-式)(^ ^)